1. What type of decimal expansion $\frac{8}{7}$ was?
2. Represent $\sqrt{ } 40$ on a number line.
3. Represent $\sqrt{7.4}$ on a number line.
4. Show that 4.987245 is a rational number.
5. Show that $1.272727 \ldots=1 . \overline{27}$ can be expressed in the form $\frac{p}{q}$, where p and q are integers and $\mathrm{q} \neq 0$.
6. Show that $0.235353=0.235$ can be expressed in the form $\frac{p}{q}$, where p and q are integers and $\mathrm{q} \neq 0$.
7. Find 4 rational numbers between $\frac{1}{7}$ and $\frac{2}{7}$.
8. Express the following in the form $\frac{p}{q}$, where p and q are integers and $\mathrm{q} \neq 0$.
i. $0 . \overline{47}$, ii. $0 . \overline{001}$
9. Visualise the representation of $5.3 \overline{7}$ on the number line up to 5 decimal places, that is up to 5.37777 .
10. Add $2 \sqrt{ } 2+5 \sqrt{ } 3$ and $\sqrt{2}-3 \sqrt{3}$.
11. Rationalise the denominator of $\frac{1}{2+\sqrt{3}}$.
12. Simplify
1) $2^{2 / 3} \cdot 2^{1 / 3}$
2) $\left(3^{1 / 5}\right)^{4}$
3) $(13)^{1 / 5} \cdot(17)^{1 / 5}$.
13. Check whether -2 and 2 are zeroes of the polynomial $x+2$.
14. Verify whether 2 and 0 are zeroes of the polynomial $x^{2}-2 x$.
15. Divide $p(x)$ by $g(x)$, where $p(x)=x+3 x^{2}-1$ and $g(x)=1+x$.
16. Factorise $49 a^{2}+70 a b+25 b^{2}$.
17. Expand $(3 a+4 b)^{3}$.
18. Factorise $4 x^{2}+y^{2}+z^{2}-4 x y-2 y z+4 x z$.
19. Without actually calculating the cubes, find the value of $(-9)^{3}+(5)^{3}+(4)^{3}$.
20. Three vertices of a square are $(-3,2)(-3,-4)(5,-4)$. Find $3^{\text {rd }}$ vertex.
21. Find 2 solutions for $3 x+4=0$.
22. Write 5 solutions for $\pi x+y=9$.
23. Give the geometric representations of $2 x+9=0$ as an equation.
i) in one variable ii) in two variables.
24. Explain Euclids $5^{\text {th }}$ postulate?
25. In fig; if $A C=B D$, then prove that $A B=C D$.
